Post-translational maturation of IDA, a peptide signal controlling floral organ abscission in Arabidopsis

نویسندگان

  • Nils Stührwohldt
  • Mathias Hohl
  • Katharina Schardon
  • Annick Stintzi
  • Andreas Schaller
چکیده

ARTICLE HISTORY Received 14 August 2017 Revised 16 October 2017 Accepted 16 October 2017 ABSTRACT The abscission of sepals, petals and stamens in Arabidopsis flowers is controlled by a peptide signal called IDA (Inflorescence Deficient in Abscission). IDA belongs to the large group of small posttranslationally modified signaling peptides that are synthesized as larger precursors and require proteolytic processing and specific side chain modifications for signal biogenesis. Using tissuespecific expression of proteinase inhibitors as a novel approach for loss-of-function analysis, we recently identified the peptidases responsible for IDA maturation within the large family of subtilisin-like proteinases (subtilases; SBTs). Further biochemical and physiological assays identified three SBTs (AtSBT5.2, AtSBT4.12, AtSBT4.13) that cleave the IDA precursor to generate the Nterminus of the mature peptide. The C-terminal processing enzyme(s) remain(s) to be identified. While proline hydroxylation was suggested as additional post-translational modification required for IDA maturation, hydroxylated and non-hydroxylated IDA peptides were found to be equally active in bioassays for abscission.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants.

Abscission is an active process that enables plants to shed unwanted organs. Because the purpose of the flower is to facilitate pollination, it often is abscised after fertilization. We have identified an Arabidopsis ethylene-sensitive mutant, inflorescence deficient in abscission (ida), in which floral organs remain attached to the plant body after the shedding of mature seeds, even though a f...

متن کامل

The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2.

In Arabidopsis thaliana, the final step of floral organ abscission is regulated by INFLORESCENCE DEFICIENT IN ABSCISSION (IDA): ida mutants fail to abscise floral organs, and plants overexpressing IDA display earlier abscission. We show that five IDA-LIKE (IDL) genes are expressed in different tissues, but plants overexpressing these genes have phenotypes similar to IDA-overexpressing plants, s...

متن کامل

Identification and molecular characterization of an IDA-like gene from litchi, LcIDL1, whose ectopic expression promotes floral organ abscission in Arabidopsis

Unexpected abscission of flowers or fruits is a major limiting factor for crop productivity. Key genes controlling abscission in plants, especially in popular fruit trees, are largely unknown. Here we identified a litchi (Litchi chinensis Sonn.) IDA-like (INFLORESCENCE DEFICIENT IN ABSCISSION-like) gene LcIDL1 as a potential key regulator of abscission. LcIDL1 encodes a peptide that shows the c...

متن کامل

Ligand-Induced Receptor-like Kinase Complex Regulates Floral Organ Abscission in Arabidopsis.

Abscission is a developmental process that enables plants to shed unwanted organs. In Arabidopsis, the floral organ abscission is regulated by a signaling pathway consisting of the peptide ligand IDA, the receptor-like kinases (RLKs) HAE and HSL2, and a downstream MAP kinase (MAPK) cascade. However, little is known about the molecular link between ligand-receptor pairs and intracellular signali...

متن کامل

Arabidopsis class I KNOTTED-like homeobox proteins act downstream in the IDA-HAE/HSL2 floral abscission signaling pathway.

Floral organ abscission in Arabidopsis thaliana is regulated by the putative ligand-receptor system comprising the signaling peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) and the two receptor-like kinases HAESA and HAESA-LIKE2. The IDA signaling pathway presumably activates a MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascade to induce separation between abscission zone (AZ) cells. Misexpres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2018